OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes.
نویسندگان
چکیده
Mutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA 'plus' phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability.
منابع مشابه
Optic atrophy plus phenotype due to mutations in the OPA1 gene: Two more Italian families
Autosomal Dominant Optic Atrophy (ADOA) is characterized by the selective degeneration of retinal ganglion cells. The occurrence of mutations in the gene encoding the dynamin-like GTPase protein Optic Atrophy 1 (OPA1) has been observed in about 60-70% of ADOA cases. A subset of missense mutations, mostly within the GTPase domain, has recently been associated with a syndromic ADOA form called "O...
متن کاملDysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations
OBJECTIVE To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. METHODS Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibro...
متن کاملDefective mitochondrial adenosine triphosphate production in skeletal muscle from patients with dominant optic atrophy due to OPA1 mutations.
OBJECTIVE To assess whether impaired energy metabolism in skeletal muscle is a hallmark feature of patients with dominant optic atrophy due to several different mutations in the OPA1 gene. DESIGN We used phosphorus 31 magnetic resonance spectroscopy to assess calf muscle oxidative metabolism in subjects with molecularly defined dominant optic atrophy carrying different mutations in the OPA1 g...
متن کاملOPA1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability
BACKGROUND Mitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot-Marie-Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure. METHODS AND RESULTS We investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease with OPA1 mu...
متن کاملAcute and late-onset optic atrophy due to a novel OPA1 mutation leading to a mitochondrial coupling defect
PURPOSE Autosomal dominant optic atrophy (ADOA, OMIM 165500), an inherited optic neuropathy that leads to retinal ganglion cell degeneration and reduced visual acuity during the early decades of life, is mainly associated with mutations in the OPA1 gene. Here we report a novel ADOA phenotype associated with a new pathogenic OPA1 gene mutation. METHODS The patient, a 62-year-old woman, was ref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 131 Pt 2 شماره
صفحات -
تاریخ انتشار 2008